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Abstract
The Phosphorus (P) Index risk assessment tool has been widely adopted across

the United States to identify and rank site vulnerability to P runoff as part of the

Natural Resources Conservation Service nutrient management planning (NMP) pro-

cess. However, limited success has been achieved in addressing the risk of P loss

by subsurface flow pathways, despite its relative importance in certain areas of the

United States, particularly in those U.S. states dominated by karst terrain. Here we

review how states with varying land areas classified as having karst features address

the risk of P runoff during the NMP process. Indices adopted in Illinois and Indiana

require setbacks (widths 15–72 m) around surface karst features. The remaining states

with karst address the risk of P loss in NMP development rather than the application of

a P Index. Given the spatially variable hydrogeologic properties of karst, technically

rigorous field-scale factors are unlikely to be developed in the near future.

1 INTRODUCTION

The Phosphorus (P) loss risk-assessment tool (P Index) has

been widely adopted across the United States as part of the

USDA-NRCS nutrient management planning (NMP) process

(i.e., 590 Conservation Practice; USDA-NRCS, 2011).

Adaptations and refinements of the P-Index framework

have occurred across U.S. state boundaries to account for

factors that influence the potential for P runoff types, such

as varying landscape, geology, hydrology, land management,

and dominant soil type (Osmond et al., 2017; Sharpley et al.,

Abbreviations: NMP, nutrient management planning.
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2003). While the P Index is an important part of the NMP

process, planning is not complete without consideration of

other factors, such as source of nutrients, available nutrients,

target crop’s production information, available crop acres,

and other environmental and application limiting information

not addressed by the P Index.

The P Index was developed to identify and rank the risk

of P loss in surface runoff from a given field (Lemunyon &

Gilbert, 1993). However, limited success has been achieved

in incorporating subsurface risk factors into P Indices, par-

ticularly in areas where subsurface flow can be an important

contributor to P loss and where sandy and organic soils have

limited P retention capacities (Sharpley et al., 2017). Areas

exemplifying these characteristics include parts of Delaware,
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Florida, Maryland, Michigan, Minnesota, North Carolina, and

Virginia. Radcliffe et al. (2015), for example, found that mod-

els describing subsurface transport of P were critically inac-

curate with respect to P movement via macropore flow, which

bypasses P sorption sites in the soil matrix. They recognized

that these model deficiencies were also problematic to the

accurate representation of subsurface P transport by P Indices.

2 KARST HYDROGEOLOGY AND
PHOSPHORUS TRANSFERS

A geological survey and review conducted by Weary and Doc-

tor (2015), determined that about 25% of the United States is

underlain by rocks and sediments having karst or pseudokarst

features or a potential for these features (Figure 1). Soluble

rocks are exposed at or lie near the surface for about 18% of

the United States; carbonate rocks constitute 16% of these sol-

uble rocks and evaporite rocks constitute the remaining 2%.

Karst hydrologic systems are defined by the heterogeneous

distribution of high-permeability solution channels that have

developed in soluble, usually carbonate rock and the con-

nectivity of these channels with the land surface (Figure 2).

This connectivity results in rapid transport of surface water, as

well as surface-derived nutrients, into the groundwater envi-

ronment, bypassing soils, regolith, and granular rock strata,

Core Ideas
• P loss via karst fissures and sinkholes can bypass

the soil regolith and enter groundwater.

• Only Illinois and Indiana have P Indices with

explicit setbacks around karst features.

• Coupling P Index assessment and nutrient man-

agement planning can address P runoff risk in

karst terrain.

• Most U.S. states address the risk of accelerated P

loss in nutrient management planning.

• Determining P loss risk in karst is challenging due

to its spatially variable hydrogeologic properties.

where any nutrient attenuation may occur. Karst groundwa-

ter flowpaths commonly cross surface topographic divides

and are dynamic, frequently changing dominant conduits and

flow direction and with variable recharge-area boundaries

and hydrologic conditions. Karst terrain is often typified

by karst features representing locations on these solution-

channel paths, such as sinkholes, springs, caves, and los-

ing streams. These characteristics render the hydrologic sys-

tem vulnerable to nutrient enrichment and impart additional

complexities, which can challenge effective management and

F I G U R E 1 Karst and potential karst areas in soluble rocks of the contiguous United States (adapted from Weary & Doctor, 2015)
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F I G U R E 2 Schematic representation of karst

features that influence the fate and transport of

nutrients in the landscape and which can increase the

speed and unpredictability of nutrient flows (adapted

from Jarvie et al., 2014)

protection of water resources (Leh, Chaubey, Murdoch, Bra-

hana, & Haggard, 2008).

Recent concerns have been expressed on the reliability of

P Indices to address the risk of P loss in karst topography,

where features such as dissolution fissures and sinkholes may

provide rapid flow pathways, which can bypass the soil matrix

and lead to an increased potential for P to enter streams and

rivers (Alloush, Boyer, Belesky, & Halvorson, 2003; Bra-

hana et al., 2014). For instance, studies of various agricultural

land uses, including concentrated animal feeding operations

in karst terrain, have shown that waste lagoons and manure

application fields can be sources of nitrogen (N), P, and bac-

teria in groundwater (Brahana et al., 2016; Hutchins, White,

& Mravik, 2012; Kelly et al., 2009).

Mellander et al. (2012), investigating the transfer of P from

agricultural soils of elevated P status (>8.0 mg L−1 as Mor-

gan’s extractable soil P) to a karstified aquifer in County

Mayo, Ireland, found concentrations of total P in groundwa-

ter were <0.025 mg L−1. While total P concentrations were

higher during episodic storm runoff events (0.05 mg L−1),

predominant flows and P transfer (75%) occurred during lat-

eral flows within the epikarst (glacial till soils overlying the

3- to 5-m-deep karstic bedrock), where P attenuation and flow

diffusion exist (Mellander et al., 2012).

Jarvie et al. (2014) used hydrochemical tracers (conserva-

tive tracers and end-member mixing analysis (Jarvie et al.,

2011, 2013; Neal et al., 2010) to account for dilution of P,

and to quantify net P retention, along transport pathways

between agricultural fields and springs in the karst-dominated

Ozark Plateau, in northwest Arkansas. They found 90% of

the annual dissolved P flux was retained in the surface 2 to

3 m of epikarst, which has the potential to reduce the risk of

acute episodic storm-driven losses of agricultural P (Jarvie

et al., 2014). However, subsequent remobilization and trans-

fer of retained P may provide a long-term source of “legacy”

P transported via springs to surface waters P (Sharpley et al.,

2013).

This paper presents a review of how the risk of P loss in sub-

surface flows in karst landscapes are addressed by P Indices

for U.S. states with karst terrain.

3 RESULTS AND DISCUSSION

The NMP process addresses the enhanced risk of nutrient loss

in all U.S. states having karst by requiring a setback or perma-

nent vegetated buffer between the zone of P application and

karst features. The width of the setback or buffer generally

defaults to NRCS Conservation Practices standards (USDA-

NRCS, 2011), ranging from 9 to 91 m (30 to 300 ft) as a func-

tion of application timing and field slope (Table 1).

A review of P Indices adopted state by state is given in

Table 1, along with the area and percentage of karst terrain in

each state. States with more than half the land area classified

as karst terrain or having the potential for karst development

(Florida, Georgia, Iowa, and Missouri) have not explicitly

included or assigned risk factors to any karst features or

degree of karst development that may accelerate the loss of P

from fields to streams (Table 1). Of 16 states with more than

25% land area exhibiting the potential for karst features, only

Illinois and Indiana (26.7 and 46.3%, respectively; Weary &

Doctor, 2015) include provision for a setback between karst

feature and land application, in lieu of a permanent vegetative

cover (Table 1). Illinois requires a 61-m (200-ft) setback, in

the absence of a permanent vegetative buffer, which ranges

from 11 m (36 ft) for 0.5% field slope to 72 m (235 ft) for >5%

slope, while Indiana requires a permanent 15-m (49-ft) buffer.

Numerous U.S. states have generated and used vulnera-

bility maps in the NMP process (McCarty, Matlock, Scott,

& Haggard, 2018; Niraula, Kalin, Srivastava, & Anderson,

2013; Walter et al., 2000). Potential issues in vulnerability

map use arise from problems of scale due to the heterogeneity

of transport factors and subsurface flowpaths, in addition to a

lack of state or national-scale databases or maps of surface
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T A B L E 1 Consideration of karst features in U.S. state P-runoff risk assessment indices

State

Potential
karst land
areaa (km2)

Percentage
karst area (%) Management of karst within an applied P Index Reference

Alabama 35,420 26.5 Not considered. Setbacks around permanent

transport conduit/feature as part of NMPb process.

Alabama NRCS 2014;

Osmond, Crouse, Hardy, &

Spencer, 2014

Arkansas 24,675 17.9 Karst features visual from surface that indicate

potential of direct contact with groundwater (i.e.,

sinkholes, rock outcroppings, springs) addressed

in NMP process with application setbacks of 15 m

(50 ft) for solid and 30 m (100 ft) for liquid

manures.

Sharpley, Moore, et al., 2010;

Sharpley, Daniels, et al.,

2010; Arkansas Pollution

Control and Ecology

Commission, 2015

Delaware 4 0.1 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Shober & Sims, 2013; Univ.

Delaware Extension, 2018

Florida 135,445 92.5 Not considered. Setbacks around karst features as

part of NMP process.

Hurt, Mylavarapu, & Boetger,

2012

Georgia 78,402 51.5 Not considered. Setbacks around karst features as

part of NMP process.

Butler et al., 2010; Georgia

NRCS 2012

Idaho 14,195 6.6 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Leytem, Bjorneberg, &

Tarkalson, 2017

Illinois 38,869 26.7 61-m (200-ft) setback in lieu of permanent vegetative

buffer ranging from 11 m (36 ft) for 0.5% field

slope to 72 m (235 ft) for >5% field slope.

Roberts and Goodrich, 2013

Indiana 43,380 46.3 Minimum buffer of 15 m (50 ft) via permanent filter

strip (CP 393), riparian forest buffer (CP 391), use

exclusion (CP 472), or fence (CP 382).

Indiana NRCS, 2004

Iowa 81,320 55.8 Karst considered for nitrate leaching but not for P. Mallarino et al., 2002

Kansas 74,952 35.2 Setbacks around karst features as part of NMP

process.

Kansas NRCS, 2003; Sonmez

et al., 2009.

Kentucky 35,287 33.7 Not considered. Setbacks around karst features as

part of NMP process.

Bolster, 2011

Louisiana 0.6 0.0005 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Felicien, 2007

Maryland 3,051 11.9 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

University of Maryland

Extension, 2015; Beegle,

Coale, Kleinman, Sexton, &

Simpson, 2015

Michigan 42,053 28.0 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Michigan NRCS, 2014

Minnesota 28,389 13.0 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Minnesota Extension, 2018

Mississippi 14,593 11.8 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Mississippi NRCS, 2007

Missouri 122,444 67.8 Setbacks around karst features as part of NMP

process.

Lory, Miller, Davis, Steen, &

Li, 2007

Nebraska 26,399 13.2 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Al-Wadaey, C.S, Shapiro,

Franti, & Eisenhauer, 2010;

Eghball & Gilley, 2001;

Wortmann, Shapiro,

Johnson, & Hancock, 2012

(Continues)
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T A B L E 1 (Continued)

State

Potential
karst land
areaa (km2)

Percentage
karst area (%) Management of karst within an applied P Index Reference

New Mexico 57,043 18.1 Not considered. As part of NMP, no application can

be made closer than 30 m (100 ft) to any down

gradient sinkholes or other conduits to surface or

groundwater.

New Mexico NRCS, 2014

New York 18,042 14.4 9-m (30-ft) vegetative buffer and 30-m (100-ft) P

application setback.

Czymmek et al., 2011, 2015;

Ketterings & Czymmek,

2012; Ketterings, Cela,

Collick, Crittenden, &

Czymmek, 2017

North

Carolina

33,165 25.9 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Osmond et al., 2014

Ohio 44,839 42.0 Not considered. Edge-of-field vegetated buffers not

considered.

Williams, King, LaBarge,

Confesor, & Fausey, 2016

Oklahoma 38,869 21.5 Oklahoma does not use a P Index as part of its 590

Nutrient Management Planning

DeLaune, Haggard, Daniel,

Chaubey, & Cochran, 2006

Oregon 2,919 1.2 Not considered. Oregon State University

Extension, 2003; Raney and

Troxell, 2008.

Pennsylvania 18,174 15.5 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Beegle et al., 2007 and 2015

South

Carolina

39,400 49.3 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

South Carolina NRCS, 2004

Tennessee 47,757 43.8 Not considered. Buffers around surface water

conveyances; width based on P Index risk rating

and NRCS standards.

Walker and Hawkins, 2016

Texas 168,743 24.6 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Texas NRCS, 2012; White,

Harmel, & Haney, 2012

Vermont 6,500 26.1 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

University of Vermont

Extension, 2017

Virginia 18,572 17.9 Not considered. 15-m (50-ft) setback around

sinkholes and limestone rock outcrops.

Beegle et al., 2015

Washington 398 0.2 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

Oregon State University

Extension, 2003;

West Virginia 5,837 9.3 Not considered. Setbacks around permanent

transport conduit/feature as part of NMP process.

McDonald et al., 2012

Wisconsin 44,308 30.6 Not considered. 15- to 30-m (50- to 100-ft) buffer

from karst features and 91-m (30-ft) buffer for

surface (or winter) applications as part of NMP

process.

Good, 2018; Good, Vadas,

Panuska, Bonilla, & Jokela,

2012

aPotential karst land area in a given U.S. state (see Weary and Doctor, 2014).
bNMP, nutrient management planning.

karst features. For example, the vulnerability map created for

Arkansas listed the entire Ozarks of northern Arkansas at the

highest vulnerability index (Scott, 1993). However, the scien-

tific community recognizes that the distribution of karst fea-

tures and the variable thickness and composition of soils, spa-

tial distribution of karst features, and differing degrees of karst

development result in variable vulnerability across the Ozarks

(Adamski, Petersen, Freiwald, & Davis, 1995; Alley, Healy,

LaBaugh, & Thomas, 2002; Healy & Scanlon, 2010). Such

problems highlight the importance of farm-scale and field-

scale data in the NMP process.

In the risk management setting, NMP is the farm- and

field-level process by which available nutrients from manure

and inorganic fertilizers, available soil fertility levels, crop

nutrient needs, P Index-mandated maximum application

limits, and other factors determine application rates and

locations. Nutrient management planning is largely an agro-

nomic, economic, and land manager’s preferences process,
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which is constrained by the P-Index assessment along with

nonapplication areas and setbacks to address concerns not

appropriately addressed by the P-Index assessment.

4 CONCLUSIONS

Accounting for subsurface flow and transport from agri-

cultural fields in P Indices remains a challenge due to the

large spatial and temporal variability of factors controlling

these flows. Additionally, an inability to reliably quantify

subsurface P fluxes from any given field hinders calibration

and verification of P-Index risk factors. Karst landscapes

impart an additional layer of complexity to subsurface flows.

In practice, the resulting risk potential is used as guidance

to help balance the risk of P runoff with other important fac-

tors such as soil fertility, crop production, manure utilization,

and farm economics. This balance usually results in a per

hectare upper limit for manure applied to specific fields. The

designation of areas where manure is not to be applied is not

the function of a P Index alone: rather that designation is the

function of various additional criteria specified by the NMP

process.

Distances between P application areas and adjacent prop-

erties or residences is one example that illustrates setbacks or

vegetative buffer are beyond the scope of the P-Index assess-

ment is. Another example is the prohibiting of applications

within specified distances of karst features, such as sink-

holes and rock outcrops that indicate the potential for karst-

associated P flows through the epikarst to groundwater. As

a result, only the coupling of the P-Index assessment and a

NMP process addresses both surface and subsurface transport

of P to receiving waters. Certainly, there is a need for further

research in characterizing subsurface flow and transport of P

in karstic regions, along with developing practices to P runoff

risk that can be incorporated practically into the nutrient man-

agement process.

Although on-farm NMP occurs at the field scale, there is a

lack of consistent and well-maintained geographical informa-

tion system databases of karst features and geologic mapping

at this scale. As an example, in Arkansas, the Arkansas Geo-

logical Survey topographic-scale geologic mapping (which

includes an inventory of karst features) usually maps one to

three quads a year; other states map at a similar rate. Thus,

NMP development and risk assessment at a state level, where

policy is made, would be aided by consistent karst feature

databases and geologic mapping.
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