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Abstract
Phosphorus distribution in pasture soils underlain with karst geology was deter-
mined on a 0.10-ha grid in 2014, 2016, and 2018. Two fields (Fields 1 and 12)
received swine slurry from a concentrated animal feeding operation, whereas
another (Field 5) received mineral fertilizer. All fields were grazed by cattle and
periodically hayed. Mean Mehlich-3 extractable P in the top 10 cm increased
(p ≤ .05 level) for Fields 1 (59–91 mg kg−1) and 12 (63–122 mg kg−1) between 2014
and 2018, with little change for Field 5 (45–47 mg kg−1). Over the 5-yr monitor-
ing period, P and N runoff averaged a respective 1.0 and 2.4 kg ha−1 yr−1 from
Fields 1 and 12 or 1.4 and 2.5% of P and N applied in swine slurry. Field 5 P and
N runoff averaged a respective 1.9 and 2.8 kg ha−1 yr−1 or 6.6 and 4.4% of that
applied as mineral fertilizer. Findings confirmed that long-term application of P,
as fertilizer or manure, in excess of pasture uptake, result in a rapid accumula-
tion of P near the soil surface, and thus, increase nutrient loss via surface runoff.
Mehlich-3 P increased in the top 10 cm of soil (143–255 mg kg−1) in edge-of-field
buffer zones of 30m on Fields 1 and 12, where nomanure was applied. This illus-
trates the complexity of cattle grazing areas as additional nutrient sources that
must be managed to minimize off-site nutrient transport that are particularly
important in karst watersheds.

1 INTRODUCTION

An increase in the concentration of P at the surface of pas-
ture soils that receive P as mineral fertilizer or manure
in amounts exceeding plant uptake has been widely

Abbreviations: AFO, animal feeding operation; CAFO, concentrated
animal feeding operation; CNMP, comprehensive nutrient management
plan; ICAP-AES, inductively coupled plasma–atomic emissions
spectrometer; M3P, Mehlich-3 extractable soil phosphorus; NMP,
nutrient management plan.
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documented over the last 30 yr (Pierson et al., 2001; Sharp-
ley, Smith, & Bain, 1993; Slaton et al., 2004). A similar
increase in soil P concentration in cropped soils has also
occurred, albeit at a slower rate due to the ability to tailor
fertilizer formulations and rates, and a potentially greater
uptake of P in harvested crops (Lanyon, 2005; Schnei-
der et al., 2019; Sims, Edwards, Schoumans, & Simard,
2000; Withers et al., 2019). Once P in soils increases above
optimum Mehlich-3 extractable soil phosphorus (M3P)
levels for crop production, even optimum management
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strategies to lower M3P levels back to below optimum lev-
els through crop removal is a slow process (Bruulsema,
Peterson, & Prochnow, 2019; Coblentz et al., 2004; Rowe
et al., 2016). As a result, attention has focused on devel-
opment and implementation of a nutrient-management-
planning framework to guide the application of fertilizer
and manure at rates to maintain optimal productivity and
protect designated uses of water resources (Osmond et al.,
2017; Sharpley et al., 2017; USDA-NRCS, 2020a).
In certain areas of the United States, such as north-

western Arkansas, litter from broiler poultry (Gallus
gallus domesticus) production (i.e., manure combined
with in-house bedding material as litter) has provided a
low-cost fertilizer for area pastures grazed by beef cattle
(Bos primigenius taurus). The use of broiler litter as a
fertilizer-P source has been mutually beneficial to live-
stock production, providing revenue from the sale of litter
as a substitute for mineral fertilizer and increased forage
production, reducing the risk of erosion and allowing
an increase in grazing density. However, the continued
application of manure based on forage-N uptake applies
P in excess of plant uptake, which has led to an increase
in surface soil P and potential for P runoff, contributing
to downstream water-use impairment (Daniels et al.,
2001; Duncan et al., 2017; Withers, Sylvester-Bradley,
Jones, Healey, & Talboys, 2014; Zhang et al., 2019b). Soil-P
enrichment from the long-term application of broiler
litter contributed to litigation between Oklahoma, where
increased algal growth in recreational and drinking water
sources were observed, and Arkansas, which was the
apparent upstream major source of nutrients accelerating
the incidence and density of algal growth in Oklahoma
(DeLaune, Haggard, Daniel, Chaubey, & Cochran, 2006;
State of Oklahoma v Tyson Foods, 2005). The litigation led
to the requirement of state-approved nutrient manage-
ment plans (NMPs) prior to land application of P or N in
several transboundary watersheds, including the Illinois
River and Eucha–Spavinaw Watersheds.
In other livestock sectors, swine animal feeding oper-

ations (AFOs) with liquid manure systems were subject
to state permitting and utilization of USDA-NRCS tech-
nical assistance. As a result, AFOs were required to oper-
ate under the guidance of federal comprehensive nutrient
management planning (CNMP) guidelines (USDA-NRCS,
2020b). In 2012, a new swine concentrated animal feeding
operation (CAFO) was permitted by the Arkansas Depart-
ment of Environmental Quality to operate in the Buf-
falo River Watershed, which contains the first National
River established in 1972 and is an important recreational
and tourist area in northwestern Arkansas (National Park
Service, 2020). The Buffalo River Watershed also con-
tains substantial areas of underlying karst geology. Swine
slurry produced by the CAFO was applied to 17 grazed

Core Ideas

∙ Soil P increased in pastures receiving swine
slurry at rates greater than plant uptake over
6 yr.

∙ Biannual grid sampling showed soil P hot spots
in areas where cattle were fed, and shade
was available.

∙ The portion of fertilizer P in runoff was more
than swine slurry due to infiltration of the
latter.

∙ Reducing P runoff must manage the rate and
timing of nutrients applied and cattle loafing
areas.

and/or hayed pasture fields at rates allowed in the farm’s
CNMP.
There is limited information detailing the fate and trans-

port of nutrients applied under NMP requirements, par-
ticularly in karst watersheds (Jarvie et al., 2014). Thus,
grid-soil samples were collected biannually (between 2014
and 2019) in two fields receiving swine slurry and one
field receivingmineral fertilizer. The study fields were also
instrumented with continuous water monitoring stations
tomeasure surface runoff exiting the fields over 5 yr (2014–
2018). This observational study provides information on
the spatial and temporal variation of P in soil and surface
runoff as a function of applying swine slurry or mineral
fertilizer in accordance with CNMP requirements in the
real-world setting of a privately operated farm in a karst
watershed.

2 MATERIALS ANDMETHODS

2.1 Field management

The three agricultural fields included in this study are
located in the Big Creek Watershed, a subwatershed of the
Buffalo River Watershed, Arkansas (Figure 1). Dominant
soils for the three fields and theirmanagement are reported
in Table 1. Annual rainfall amounted to 105, 159, 90, 104,
and 121 cm in 2014, 2015, 2016, 2017, and 2018, respectively,
whereas average rainfall for the region is 117 cm (National
Park Service, 2020). The permitted CNMP required the
establishment of 30-m buffers, where no swine slurry
could be applied, adjacent to all sinkholes, ponds, and
streams (Figure 2). Application of slurry on slopes >15% in
Field 1 was also prohibited by the CNMP, and farm owners
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F IGURE 1 Location of Buffalo River Watershed, Big Creek Watershed, farm, and fields studied in Arkansas

TABLE 1 Field properties and management

P and N applied
P and N applied as: 2004–2012 2014–2018

Field Area Management 2004–2012a 2014–2018 P N P N
ha kg ha−1 yr−1

1 6.3 Grazed at 0.5
animal units ha−1

Poultry litter Swine slurry 50 120 60 74

5 10.8 Hayed and grazed
at 0.3 animal
units ha−1

Poultry litter DAPb 50 120 28 64

12 9.6 Hayed and grazed
at 0.3 animal
units ha−1

Poultry litter Swine slurry 50 120 92 131

a4.5 Mg ha−1 poultry litter every 2 yr.
bDAP, diammonium phosphate.
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F IGURE 2 Field boundaries, location of georeferenced 0.10-ha grid points used to collect soil samples from Fields 1, 5, and 1 in 2014, 2016,
and 2018, buffers where no swine slurry can be applied, and edge-of-field flume monitoring surface runoff

implemented an additional 15-m buffer on Field 12 along
the southern neighboring field boundary (Figure 2).
In the 10-yr prior to CAFO operation and land applica-

tion of swine slurry produced on the farm (2004–2014),
the three fields received poultry litter every 2 yr, which
amounted to 25 and 60 kg ha−1 yr−1 of P andN, respectively
(Table 1). Since 2004, the three fields have been grazed, on
average, at 0.5 and 0.3 animal units ha−1 for Field 1 and
Fields 5 and 12, respectively, and hay was periodically cut
on Fields 5 and 12. In 2014, Fields 1 and 12 started receiving
swine slurry, which addedmore P andN than in prior years
as poultry litter (Table 1). Field 5 received only diammo-
nium phosphate each year, and data from Field 5 provides
a reference point for continued, normal pasture manage-
ment in the region (Table 1). It should be noted that appli-
cations of swine slurry to Fields 1 and 12 were made in
accordance with the required CNMP for farm operation,
whereas the application of fertilizer to Field 5 was based
on landowner preference and was not under the mandate
of the CNMP.
Soil survey and ground penetrating radar (conducted

by Natural Resources Conservation Service, NRCS) of
Fields 1, 5, and 12 showed soils varied in depth across
and among fields (Big Creek Research and Extension
Team, 2019). Field 1, dominated by Noark silt loam (Typic
Paleudults), had an overlying layer of soil that varied from
zero (rock outcrops) to 50 cm. Fields 5, dominated by

Razort sandy clay loam (Mollic Hapludalfs) and 12 dom-
inated by Spadra clay loam (Typic Hapludults) adjacent to
Big Creek, had soils varying in depth from 80 to 150 cm
deep. The deeper soil profiles for Fields 5 and 12 were adja-
cent to Big Creek, with the thinner soils at a higher ele-
vation on the side of a hill, on the field further from the
Creek. Land slopes ranged from 2 to 20% for Field 1, 0.2 to
1.0% for Field 5, and 0.5 to 2.0 for Field 12.

2.2 Grid soil sampling

Grid sampling of soil in Fields 1, 5, and 12 was conducted
biannually in February 2014, February 2016, and March
2018 to best reflect potential changes over time, while
minimizing interferingwith landmanagement operations.
A 0.10-ha grid layer was used to generate sample point
locations in ArcGIS (ESRI, 2014) and coordinates loaded
into a global positioning system (GPS) unit (GPSMap 64st,
Garmin International) so that biannual soil grid sampling
could be collected at predetermined locations (Figure 2).
Soil samples consisted of five cores collected at depths of
0–10 and 10–20 cmwithin a 1.5-m radius of each GPS point
location and combined into one composite sample for each
grid point, per soil depth, per field.Where coarse fragments
stopped the core sampler from penetrating below 10 cm
on Field 1, no sample was collected beyond that point. In
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2018, 10- to 20-cm depth soil samples were not collected for
Field 1.

2.3 Soil analysis

All composite core samples were dried at 60 ◦C and ground
to pass through a 2-mm sieve. Anymaterial that would not
crush bymanualmortar and pestle to pass the 2-mmscreen
was discarded. Particle-size analysis of samples collected in
2014 was conducted by the hydrometer method (Huluka
& Miller, 2014). All analyses used subsamples of oven-
dried, ground material. Soil pH was determined in a 1:2
soil/watermixture (Sikora&Kissel, 2014); soil organicmat-
ter by weight loss on ignition (Zhang & Wang, 2014); total
C and N by thermal combustion analysis (Provin, 2014);
total P by alkaline oxidation (Leytem & Kpomblekou-A,
2009); and cation exchange capacity (CEC) using neutral
NH4OAc (Sikora et al., 2014). Mehlich-3 P, Al, and Fe
were extracted from soil by shaking 2 g of soil with 20 ml
of reagent for 5 min (Mehlich, 1984) and concentrations
were determined using an inductively coupled plasma–
atomic emissions spectrometer (ICAP-AES; Zhang, Hardy,
Mylavarapu, & Wang, 2014a).
Following soil analyses, the spatial analyst tool “Spline

with Barriers” was used within ArcGIS (ESRI, 2014) to
create spatial distribution maps depicted in Figure 3. By
inputting the geo-referenced results of the grid soil sam-
pling and defining the field boundary (barrier), the tool
produced a smooth surface of minimum curvature values
using the spline interpolation method.

2.4 Swine slurry sampling and analysis

A foot valve liquid manure sampler was used to collect
composited samples of slurry from the entire depth of the
slurry pond profile in April of each study year, to repre-
sent the homogenized swine slurry resulting from agita-
tion prior to and during land application (VanDevender,
2010). The pH and electrical conductivity were determined
by electrode (Wolf, 2003a, 2003b), solids gravimetrically
after drying at 105 ◦C (Hoskins, Wolf, & Wolf, 2003), and
nitrate-N and ammonium-N concentrations colorimetri-
cally (Peters, Wolf, & Wolf, 2003). Total N was determined
following Kjeldahl digestion (Watson,Wolf, &Wolf, 2003);
total P, K, and Ca following microwave assisted nitric and
hydrochloric acid digestion (Wolf, Watson, & Wolf, 2003);
and water-extractable P following extraction of slurry
with water (Wolf, Moore, Kleinman, & Sullivan, 2009).
The P, K, and Ca concentrations were determined via
ICAP-AES.

2.5 Runoff measurement

Autosamplers collected edge-of-field surface runoff from
Fields 1, 5, and 12. Each sampler was programed to initiate
sample collection when a stage height exceeded 2 cm in
the 45 cm (1.5 ft) tall H flume on Field 1 and 30 cm (1 ft) tall
H flume on Fields 5 and 12.Water samples collected during
a storm event were composited in a 10-L bottle enclosed in
the ISCO sampler, which provided a flow-weighted, com-
posite sample for each runoff event. A subsample was fil-
tered (<0.45 μm) at the time of collection and kept at 4 ◦C
until analysis by ICAP-AES within 8 h of collection.

2.6 Runoff water analysis

Runoff water sample analyses included dissolved P
(EPA 365.1) and nitrate-N (EPA 300.0) on a filtered sam-
ple and total P (APHA 4500-P J; EPA 365.1) and total
N (APHA 4500-P J; EPA 365.1) on unfiltered samples
(USEPA, 2004, 2020). Suspended sediment concentra-
tion in the collected runoff water samples was deter-
mined gravimetrically as the difference inweights between
oven-dried (105 ◦C) unfiltered and filtered (<0.45 μm)
water samples.

2.7 Statistical analyses

Statistical analyses were performed by using unpaired
t tests (p≤ .05) and one-way analysis of variance comparing
M3P concentrations from Fields 1, 5 and 12 using JMP sta-
tistical software (Lehman, O’Rourke, Hatcher, & Stepan-
ski, 2013). Statistical analysis of M3P concentrations for
each field were made on a whole-field, slurry-application,
and field-buffer-zone basis. Analyses were also conducted
separately by soil sample depth.

3 RESULTS AND DISCUSSION

3.1 Grid soil sampling

Physiochemical soil properties involved in the fate of
applied P are reported in Table 2. Constituent concentra-
tions in swine slurry applied to the fields were averaged
over the 5-yr study and are reported in Table 3.
On a whole-field basis, M3P concentrations in the 0- to

10-cm depth increased by a respective 32 and 59 mg kg−1
for Fields 1 and 12 between 2014 and 2018 soil sampling
(p< .05; Table 4). For the slurry application zone of Fields 1
and 12, M3P concentrations increased (p < .05) 50 and
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F IGURE 3 Spatial distribution of Mehlich-3 extractable soil P in the 0- to 10-cm soil depth on Fields 1, 5, and 12 for grid soil sampling in
February and March of 2014, 2016, and 2018
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70mg kg−1 over the same period, respectively. In the buffer
zone of each field, where no slurry was applied (the buffer
zone of Field 5 did receive mineral fertilizer), M3P concen-
trations only numerically increased between 2014 and 2018
(Table 4).
The spatial distribution of M3P concentrations in the 0-

to 10-cm soil depth of Fields 1, 5, and 12 for 2014, 2016,
and 2018 grid sampling are depicted in Figure 3 (whole
field basis). The ranges in M3P of <25, 25–50, 50–100,
and >100 mg kg−1 reflect Land-Grant University soil fer-
tility and plant response categories of deficiency, opti-
mum for cool-season grasses, little response to additional
P expected for cool- and warm-season grasses, and no
plant growth response expected to added P, respectively
(Espinoza, Slaton, & Mozaffari, 2006).
It is evident from the spatial distribution maps of M3P

concentrations that accumulation of P occurred in some
areas within the top 10 cm of Fields 1 and 12 (Figure 3).
These areas are generally located around points of shade
on Fields 1 and 12 (northern boundary of these fields),
where cattle congregated. For Field 12, the area of M3P
concentrations greater than 100 mg kg−1 occurs on the
southwest corner of the field and is located at the gated
entrance to the field, where cattle are routinely fed hay dur-
ing non-grazing months. The area with a M3P concentra-
tion greater than 100 mg kg−1 expanded with each bian-
nual soil sampling, with maximum M3P concentration of
147, 193, and 256mgkg−1 from the 2014, 2016, and 2018 grid-
sampling results, respectively (Figure 3). Additional indi-
vidual points with elevated P levels in these fields may be
due to cowpats that may no longer be visible at the surface.
It should be noted that accumulation of M3P in the

southwest corner of Field 12 was evident in the 2014 grid
soil sampling (Figure 3), which was completed 31 Jan. 2014
prior to the first application of swine slurry to Field 12
on 22 Apr. 2014. In fact, the largest M3P concentration of
256 mg kg−1 in the 2018 sampling was measured in the
buffer zone of Field 12, where no swine slurry has been
applied. Similarly, and in the 2014 and 2016 grid sampling,
maximum M3P concentrations were comparable in the
slurry application (147 and 193 mg kg−1, respectively) and
buffer zones (147 and 190 mg kg−1, respectively; Figure 3).
Clearly, in-field spatial variation inM3P concentrations for
Fields 1 and 12 are a function of land and grazing manage-
ment, along with swine slurry application.
For the 10- to 20-cm soil depth, a 44% increase in

M3P concentration between 2014 and 2018 (p < .05) was
determined on a whole-field basis for Field 12, although
for Field 5, which received mineral fertilizer between 2014
and 2018, M3P concentrations decreased 27% (Table 5). On
a zonal basis, only Field 12 exhibited a 67% increase inM3P
concentration in the slurry application zone, Field 5 exhib-
ited a 26% decrease in M3P concentration, whereas there
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TABLE 3 Constituent concentration of swine slurry sampled from the profile of holding pond averaged for semi-annual samplings
between 2014 and 2019

Constituent Concentration Range
pH 7.6 7.4–7.9
Electrical conductivity, μS cm−1 12,413 10,060–14,770
Solids, % 3.73 2.51–5.57
Total N, mg L−1 2,614 1,514–3,970
Ammonium-N, mg L−1 1,147 875–1,577
Nitrate-N, mg L−1 0.058 0.035–0.175
Total P, mg L−1 1,285 253v2,916
Water-extractable P, mg L−1 177 138–202
Total K, mg L−1 1,363 1,054–1,537
Total Ca, mg L−1 1,069 102–2,355

was no change in M3P concentration in the 10- to 20-cm
soil depth in the buffer zone of all three fields (Table 5).
These results suggest that some downward movement of
P likely occurred in Field 12 in the zone where slurry was
applied and cattle grazed.

3.2 Surface runoff

The annual flow and loss of P, N, and sediment in surface
runoff for 2014 through 2018 are reported in Table 6. The
greater nutrient runoff from Fields 5, 12 were dominated
by major storm events during 2015, when annual rain-
fall exceed annual average by 42 cm. These storm events
resulted in approximately twice the volume of runoff in
2015 (5,232 and 9,741 m3 ha−1 yr−1, respectively) than the
other 4 yr combined (2,728 and 4,521 m3 ha−1 yr−1, respec-
tively; Table 6). Additionally, Fields 5 and 12 are adja-
cent to Big Creek, which breached its banks and flooded
these fields in May and December 2015. In contrast to
Fields 5 and 12, surface runoff from Field 1 was largest in
2017. Despite less P applied in mineral fertilizer to Field 5
between 2014 and 2018 (28 kg ha−1 yr−1) than for Fields 1
and 12 that received slurry (60 and 131 kg ha−1 yr−1, respec-
tively), the 5-yr mean loss of dissolved and total P were
greater from Field 5 than from Fields 1 and 12 (Table 6).
The annual loss of P and N in surface runoff aver-

aged for the 5 yr of monitoring from Field 1 were 1.5 and
2.8%, respectively, of that applied in slurry, whereas for
Field 12 losses averaged 1.2% P and 2.1% N, respectively, of
that applied (Table 7). For Field 5, loss of P and N aver-
aged 6.6 and 4.4%, respectively, of that applied in min-
eral fertilizer (Table 7). Nutrient losses measured from the
three fields were similar to P losses reported from other
fields in the same region. For example, pastures in north-
western Arkansas, also in the karst region of the Boston
Mountains/Ozark Highlands, receiving poultry litter (Bol-

ster et al., 2019) had losses ranging from 1.05 to 1.62 kg P
and 0.35 to 1.41 kg N ha−1 or 1.6 to 2.3% of applied P and 0.3
to 1.1% applied N (Table 7).
The runoff collection station for Field 1 was located at

the base of a hill. The existing nutrient management plan
for Field 1 restricted slurry application to the flat hilltop
only and slurry was not directly applied to the slope. Con-
sequently, the sloped area effectively served as a vegetated
buffer. The greater percentage of nutrient loss from Field 5
relative to Field 12 was likely a combination of commer-
cial mineral fertilizer P being more soluble than that from
the swine slurry (Sharpley & Moyer, 2000), differences in
surface hydrology, and a lack of vegetative buffers, as no
swine slurrywas applied. As these are permanent pastures,
commercial fertilizer may settle at the soil surface and be
unincorporated within the soil itself until rainfall occurs,
which may have promoted surface runoff-P losses, while
infiltration of slurry may help rapidly incorporate the sol-
uble portions of P into the soil, which likelyminimized sur-
face runoff-P losses.

4 CONCLUSIONS

Findings from this case study of grid soil sampling between
2014 to 2018 reinforced current nutrient management
understanding that the annual application of P, as fertil-
izer or swine slurry, in amounts greater than uptake of
P by pasture vegetation result in an accumulation of P
at the soil surface and thus, potential for nutrient runoff.
The P accumulation rate is largely determined by the mag-
nitude of P application above expected P removal, with
further increases in M3P eventually limiting P additions
as fertilizer or swine slurry in future iterations of nutri-
ent management planning. Given the variation in rainfall-
driven runoff from year to year, there was no consis-
tent trend of increasing loss of P or N over the 5 yr of
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TABLE 5 Mean Mehlich-3 extractable soil P concentration in the 10- to 20-cm soil depth collected in 2014, 2016, and 2018 grid sampling
of Fields 1, 5, and 12 based on the whole field, slurry application zone, and no application buffer zones. In 2018, 10- to 20-cm soil depth
samples were not collected for Field 1

Field 1 Field 5 Field 12

Year
No. of
samples Meana

No. of
samples Meana

No. of
samples Meana

mg kg−1 mg kg−1 mg kg−1

Whole field
2014 26 20 a 44 45 a 39 36 b
2016 69 27 a 44 27 b 45 50 a
2018 – – 43 33 b 35 52 a
Slurry application zone
2014 17 20 a 17 46 a 31 33 b
2016 35 38 a 28 27 b 34 47 a
2018 – – 27 34 b 28 55 a
Buffer zone
2014 9 19 a 5 43 a 8 49 a
2016 34 15 a 16 27 a 11 58 a
2018 – – 16 31 a 7 36 a

aFor a given field and zone, means followed by the same letter are not significantly different as determined by unpaired t test with α < .05 level of probability.

TABLE 6 Annual flow and loss of P, N, and sediment in surface runoff from Fields 1, 5, and 12 for 2014 to 2018

Flow Dissolved P Total P Nitrate-N Total N Sediment
m3 ha−1 yr−1 kg ha−1 yr−1

Field 1
2014 630 0.34 0.49 0.13 0.81 45.6
2015 551 0.17 0.25 0.10 0.72 17.7
2016 20 0.02 0.02 0.01 0.05 1.2
2017 3,629 2.55 3.44 1.43 8.13 203.1
2018 118 0.15 0.17 0.20 0.50 2.8
Mean 990 0.65 0.87 0.37 2.04 54.1
Field 5
2014 34 0.02 0.03 0.00 0.02 1.3
2015 5,231 1.30 5.00 0.68 7.82 1,655.5
2016 136 0.16 0.18 0.04 0.23 3.6
2017 1,015 0.84 1.11 0.79 1.70 11.7
2018 1,543 1.99 2.95 0.37 4.22 150.8
Mean 1,592 0.86 1.85 0.38 2.80 364.6
Field 12
2014 NRa 0.00a 0.00 0.00 0.00 0.00
2015 9,741 2.01 3.68 1.37 8.30 359.9
2016 32 0.01 0.02 0.02 0.13 18.2
2017 4,489 1.19 1.93 0.69 5.16 508.4
2018 NRa 0.00 0.00 0.00 0.00 0.00
Mean 4,754 0.64 1.13 0.42 2.72 221.6

aNR, no runoff occurred from Field 12 during 2014 and 2018.
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monitoring with slurry application to Fields 1 and 12 or
mineral fertilizer application to Field 5.
Interpretation of M3P accumulation in surface soils fol-

lowing fertilizer or swine slurry application is complicated
by the grazing management of the studied fields, which
created well-defined areas of M3P accumulation adjacent
to farm ponds, field gates, and shade trees, where cattle
loafing occurred.
An added complication, albeit a reality of “real-world”

agricultural farming, was the fact that, from producer
interviews, grazing density increased gradually and, in
2018, was twice that in 2014 for Fields 1 (0.5–1.0 animal
units ha−1) and 12 (0.3–0.6 animal units ha−1). Increased
grazing density was in response to increased forage growth
afforded by swine slurry applications and in part led to
M3P accumulations in specific areas of Fields 1 and 12.
As grazing and nutrient management of these fields influ-
enced nutrient accumulation in soil and loss in runoff, it
can be concluded that efforts to minimize nutrient runoff
from these sites must include adaptive management of
both the rate and timing of nutrient applications (as min-
eral fertilizer, swine slurry, and poultry litter), as well as
grazing, to preserve water quality in sensitive watersheds,
particularly those with underlying karst geology, such as
the Buffalo River Watershed.
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