

Big Creek Research & Extension Project : One year on

Project objectives

- Monitor fate & transport of nutrients & bacteria from land-applied swine slurry
- Assess impact of farm operations on water quality of springs, streams & ground water on & adjacent to the farm
- Determine sustainability of manure solidliquid separation that may enhance off-farm export of manure & nutrients

The team

Andrew Sharpley	Soil & water quality, watershed mgt.
Rick Cartwright	Assoc. Dir. Extension for Agric. & Natural Resources
Brian Breaker (USGS)	Hydrology, data collection, & analysis
Kris Brye	Soil physics, pedology, sustainability, nutrient leaching
Mark Cochran	Vice President, U of A System Division of Agriculture
Mike Daniels	Extension water quality & nutrient mgt. specialist
Ed Gbur	Statistical applications to agriculture, expt. design
Brian Haggard	Ecological engineering, water quality monitoring
Phil Hays (USGS)	Karst hydrogeology and groundwater quality
Tim Kresse (USGS)	Ground and stream water quality
Nathan McKinney	Asst. Dir. Agric. Expt. Station
Mary Savin	Structure & function of microbial communities
Thad Scott	Water quality, stream ecology and response
Karl VanDevender	Extension engineer, manure mgt. & planning
Adam Willis	County Extension Agent - Agriculture
Jun Zhu	Manure treatment technologies, ag. sustainability
Field technicians	Equipment construction, soil & water sampling experts

Complex karst systems

Complex karst systems

RESEARCH & EXTENSION University of Achansus System

DELET

RESEARCH & EXTENSION University of Achanan System

DELET

RESEARCH & EXTENSION University of Advances System

Conducted

LIDAR topographic survey

Conducted

- LIDAR topographic survey
- Grid soil sampling (0.25-acre grid)

IVISION OF AGRICULTURE ESEARCH & EXTENSION University of Achieven System

Conducted

- LIDAR topographic survey
- Grid soil sampling (0.25-acre grid)
- Ground penetrating radar

- Conducted
 - LIDAR topographic survey
 - Grid soil sampling (0.25-acre grid)
 - Ground penetrating radar

inches

- Conducted
 - LIDAR topographic survey
 - Grid soil sampling (0.25-acre grid)
 - Ground penetrating radar
- Installed & monitored
 - Surface runoff flumes
 - Monitoring wells
 - Springs
 - Big Creek above and below the farm

Water quality

Storm & weekly sampling of base flow in Big Creek & springs samples
Nutrients, sediment, bacteria
Field runoff & leaching sampling on application fields

Spring

Ephemeral stream

Big Creek

Field runoff sites

RESEARCH & EXTENSION Driversity of Advances System

Spring box captures & directs water to cattle trough

USGS gauging site downstream of farm **Real time** Flow **Nitrate Temperature** Rainfall

0.00

Jan 10

2015

Feb 07

2015

Jan 24

2015

Feb 21

2015

Mar 07

2015

Mar 21

2015

Арг 04

2015

3.0 2.5

2.0

Jan 10

2015

Jan 24

2015

Feb 07

2015

Feb 21

2015

Mar 07

2015

Mar 21

2015

Арг 04

2015

Field wells

So, what have we found so far?

Slurry applications & downstream trends

E. coli (MPN/100mL) difference between down & upstream sites

E. Coli counts in Big Creek

Primary contact season, May 1 to Sept. 30 = 298 Secondary contact season, Oct. 1 to April 30 = 1490

Holding-pond trench

Sample collection points

Trench construction

University of Achances System

What next?

- Karst features exist ~15 30' below land surface
- Natural nutrient & bacteria variability in Big Creek
- No consistent trends in Big Creek water quality
- Too early to say if there is or is not an impact

