

THE BIG CREEK RESEARCH & EXTENSION TEAM

SUSTAINABLE MANAGEMENT OF NUTRIENTS ON THE C&H FARM IN BIG CREEK WATERSHED

The team

Andrew Sharpley	Soil & water quality, watershed mgt.
Rick Cartwright	Assoc. Dir. Extension for Agric. & Natural Resources
Kris Brye	Soil physics, pedology, sustainability, nutrient leaching
Mark Cochran	Vice President, U of A System Division of Agriculture
Mike Daniels	Extension water quality & nutrient mgt. specialist
Brian Haggard	Ecological engineering, water quality monitoring
Phil Hays (USGS)	Karst hydrogeology and groundwater quality
Tim Kresse (USGS)	Ground and stream water quality
Nathan McKinney	Asst. Dir. Agric. Expt. Station
Mary Savin	Structure & function of microbial communities
Thad Scott	Water quality, stream ecology and response
Karl VanDevender	Extension engineer, manure mgt. & planning
Adam Willis	County Extension Agent - Agriculture
Jun Zhu	Manure treatment technologies, ag. sustainability
Field technicians	Equipment construction, soil & water sampling experts

Project objectives

Monitor fate & transport of nutrients & bacteria from land-applied swine slurry Assess impact of farm operations on water quality of springs, streams & ground water on & adjacent to the farm

Determine sustainability of manure solidliquid separation that may enhance offfarm export of manure & nutrients

Our partners

Arkansas Association of Conservation Districts

Cooperating with

So far, we have

- Conducted
 - LIDAR topographic survey
 - Grid soil sampling (0.25-acre grid)
 - Ground penetrating radar

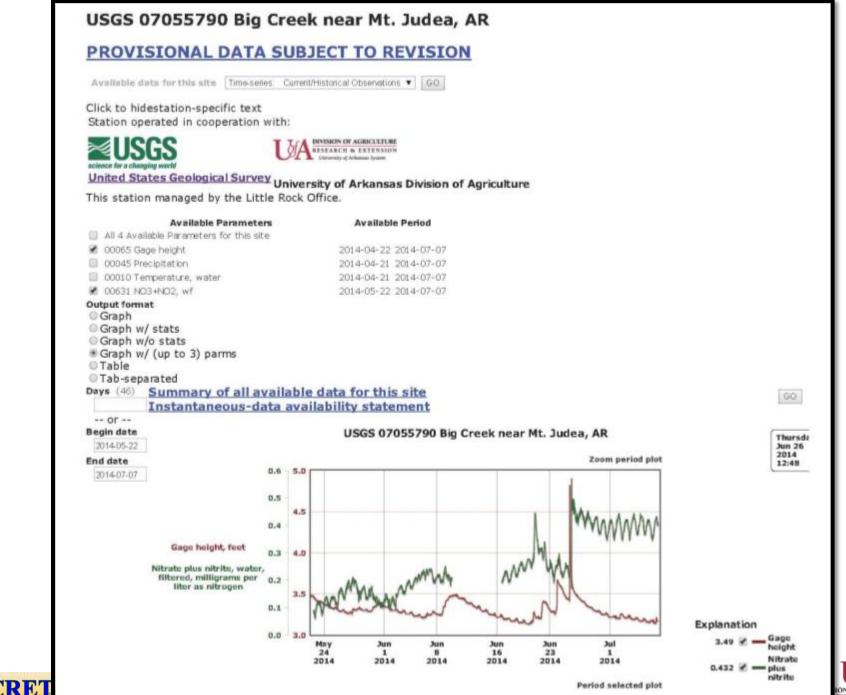
Iniversity of Arbanson System

Water quality

 Storm & weekly sampling of base flow in Big Creek & springs samples
Nutrients, sediment, bacteria
Field runoff & leaching in application fields

Big Creek

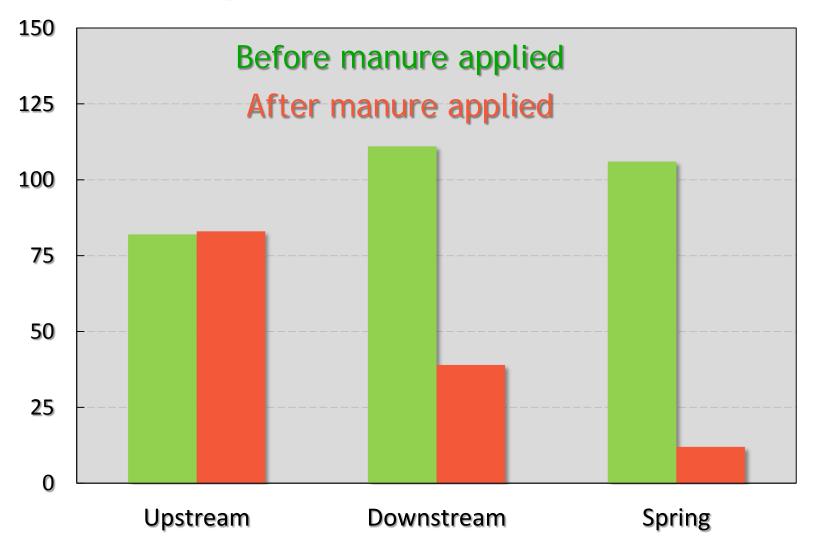
Ephemeral stream



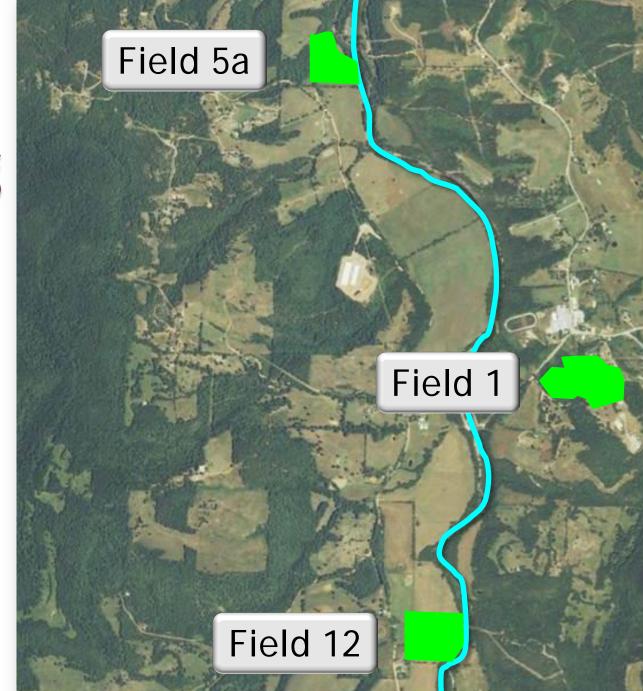
USGS gauging site downstream of farm **Real time Flow** Nitrate **Temperature**

ABCH & EXTENSION University of Advance System

Spring box captures & directs water to cattle trough


Ephemeral stream site

Big Creek water quality, mg/L


	Stream							Spring	
	Diss. P		Total P		Nitrate-N		Diss. P	Nitrate-	
	Up	Down	Up	Down	Up	Down	D133. 1	N	
Sept	0.015	0.010	0.064	0.024	0.35	0.45	0.005	0.25	
Oct	0.014	0.021	0.033	0.086	0.47	0.60	0.006	0.18	
Nov	0.017	0.019	0.032	0.051	0.21	0.23	0.008	1.82	
Dec	0.009	0.007	0.024	0.022	0.17	0.28	0.007	0.71	
Jan	0.009	0.010	0.022	0.026	0.17	0.36	0.008	2.13	
Feb	0.008	0.008	0.019	0.015	0.07	0.15	0.007	0.61	
Mar	0.008	0.009	0.033	0.033	0.11	0.20	0.008	0.64	
April	0.023	0.013	0.206	0.035	0.07	0.14	0.012	0.51	
Мау	0.008	0.008	0.031	0.032	0.09	0.14	0.008	0.39	

Big Creek - E. coli

E. coli geometric mean (MPN/100mL)

Sampling for field runoff and leaching

Autosampler

Surface runoff monitoring

8-132

Field wells

MEDI

Field wells

EUT

Field 1

G

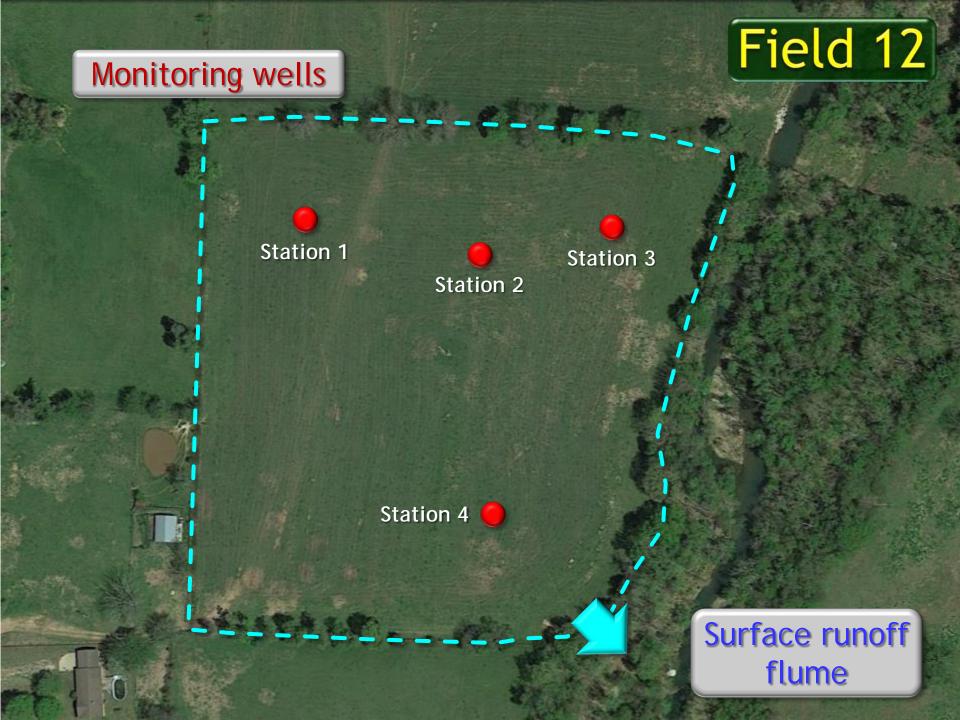
Field 5a

Surface runoff

flume

Monitoring wells

Station 4


Station 5

Station 2

117

Station 1

Station 3

What next ?

- Tracers of flow pathways
 - Dyes, natural, elec. resistivity
- Trench & wells near ponds
- Biological status of Big Creek & other watersheds
- Monitor Dry Creek
- Repeat grid-soil sampling
- Continue monitoring water quality

Monitoring trench

Sample collection point

Possible siting of trench

Thank you

